
 Introducing the Large Medical Model: 
 State of the art healthcare cost and risk prediction 

 with transformers trained on patient event sequences 
 GenHealth.ai 

 Ricky Sahu, Eric Marriott, Ethan Siegel, David Wagner, Flore Uzan, Troy Yang, Asim Javed 
 {hello}  @genhealth.ai 

 Abstract 
 With U.S. healthcare spending approaching $5T (“NHE 
 Fact Sheet” 2024), and 25% of it estimated to be wasteful 
 (“Waste in the US the health care system: estimated costs 
 and potential for savings”, n.d.), the need to better predict 
 risk and optimal patient care is evermore important. This 
 paper introduces the Large Medical Model (LMM), a 
 generative pre-trained transformer (GPT) designed to 
 guide and predict the broad facets of patient care and 
 healthcare administration. The model is trained on 
 medical event sequences from over 140M longitudinal 
 patient claims records with a specialized vocabulary built 
 from medical terminology systems and demonstrates a 
 superior capability to forecast healthcare costs and 
 identify potential risk factors. Through experimentation 
 and validation, we showcase the LMM's proficiency in not 
 only in cost and risk predictions, but also in discerning 
 intricate patterns within complex medical conditions and 
 an ability to identify novel relationships in patient care. 
 The LMM is able to improve both cost prediction by 14.1% 
 over the best commercial models and chronic conditions 
 prediction by 1.9% over the best transformer models in 
 research predicting a broad set of conditions. The LMM is 
 a substantial advancement in healthcare analytics, 
 offering the potential to significantly enhance risk 
 assessment, cost management, and personalized 
 medicine. 

 Result summary for Large Medical Model evaluation metrics 

 1. Introduction 
 Healthcare administration involves balancing the cost of 
 care with the need to mitigate risks and ensure positive 
 patient outcomes . The industry, especially in the United 
 States, is largely driven by health plans attempting to 

 reduce healthcare costs while maintaining high margins, 
 and healthcare providers (typically under fee-for-service 
 incentive structures) who benefit from increased services 
 and care resulting in increased revenue. Pharmaceutical 
 companies (pharma) are also deeply invested in this 
 landscape, aiming to develop and commercialize 
 medications to improve patient outcomes while 
 mitigating adverse reactions. New value-based-care 
 incentives propagate the balancing act between cost and 
 risk, but shift the responsibility to single entities like 
 Accountable Care Organizations (ACOs) or Medicare 
 Advantage Plans. 
 For providers, payers, pharma, and patients to better 
 balance risk, cost, and treatment efficacy, they must 
 understand what attributes of an individual’s history most 
 impact the future, and the web of interaction effects 
 among those over time. Along with medical outcomes, the 
 financial aspects of care delivery are also important. They 
 are, however, often separately codified in contracts 
 between payers, providers, and pharma, further occluded 
 by negotiations between the parties. Understanding the 
 long term cause and effect of healthcare interventions is 
 an exceptionally difficult problem for humans and 
 machines alike. 
 First, the science of medicine is continuously developing. 
 Our understanding of how different parts of the body 
 react to various treatments and interventions continues 
 to evolve. As new therapies and medications are 
 developed, the complexity of medical care increases, 
 necessitating ongoing learning and adaptation. 
 Healthcare’s dynamic environment makes it challenging 
 to maintain up-to-date knowledge while considering a 
 broad set of possibilities and effective application of 
 treatments across diverse patient populations. 
 Second, the data available in healthcare is vast and varied. 
 Medical records encompass an extensive range of data 
 types, including procedures, medications, costs, 
 locations, provider information, genomics, conditions, 
 laboratory results, textual notes, demographics, images, 
 and more. Furthermore, these data originate from 
 multiple sources such as electronic medical records 
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 (EMRs), insurance claims, sensors, and the environment. 
 As longitudinal patient records are often fragmented it is 
 difficult to assemble a comprehensive view of a patient's 
 medical history and predict future healthcare needs 
 accurately. 
 Finally, the variation in the population and environment 
 leads to highly individualized medical journeys that even 
 large-scale research studies fail to capture fully.The 
 research that is done is often isolated geographically or to 
 only those patients who will respond most favorably, 
 limiting the generalizability of findings. This individuality 
 necessitates personalized approaches to care that 
 account for the distinct medical and social contexts of 
 each patient. 
 To achieve improved healthcare predictions within the 
 high dimensional nature of healthcare, one approach is to 
 imagine healthcare data as a sequence of events playing 
 out over time. This framing lends itself naturally to 
 sequence to sequence models in order to predict future 
 events. The field of sequence based modeling has recently 
 been taken over by deep learning and is now largely 
 centered upon sequence to sequence neural network 
 architectures, such as transformers. 

 2. Related Work 
 Healthcare plays a massive role in national economies, is 
 a major focus of financial investment globally, and is ever 
 important in our own lives as we age. As healthcare costs 
 continue to mount, so has interest from government 
 agencies, insurance providers, healthcare institutions, 
 medical professionals, the pharmaceutical industry, and 
 patients in understanding how to better manage and 
 control these expenses while achieving better outcomes. 
 This imperative has produced many commercial models 
 designed to accurately forecast healthcare costs and 
 patient risks. 
 Traditionally, healthcare analytics are based on 
 purpose-built statistical models specialized for specific 
 problems. These models typically focus on structured 
 data such as diagnostic codes, demographic information 
 and pharmacy records. For example, the Hierarchical 
 Condition Category (HCC) model developed by the 
 Centers for Medicare and Medicaid Services (CMS) is a 
 classical linear model used for risk adjustment to identify 
 patients with chronic health conditions and estimate 
 their healthcare costs. Since 2004, CMS has used the HCC 
 model to calculate payments to healthcare organizations 
 for patients with Medicare Advantage, Accountable Care 
 Organization (ACO), and Affordable Care Act (ACA) plans 
 (“IMO Health”, n.d.). Similarly, models such as the Chronic 
 Illness & Disability Payment System (CDPS), Milliman’s 
 MARA, and Adjusted Clinical Groups (ACG) from Johns 
 Hopkins University assess morbidity burdens by analyzing 
 diagnostic data and a limited set of other events like 

 medications and past cost. These models are often 
 designed for targeted populations such as Medicaid 
 beneficiaries and are effective within their limited scope. 
 While most commercial offerings are also based on linear 
 models, some employ more advanced statistical methods 
 such as gradient boosted trees (Kumar 2023). However, 
 these models still fall short in capturing the complexity, 
 sequencing, and nuances of medical data as they fail to 
 account for the entirety of a patient's health record. This 
 limitation becomes evident in predicting outcomes for 
 complex diseases such as diabetes where long term 
 progression pattern plays significant role (An Tran-Duy 
 2020,). 
 Given the billions of dollars to be gained with better cost 
 and risk prediction models and the clear benefits on 
 patient outcomes, the industry has begun to explore the 
 application of generative AI to this domain. Recent works 
 such as BEHRT (BERT for Electronic Health Records) (Li, 
 n.d.,), RETAIN (REverse Time AttentioN) (Choi, n.d.) 
 Foresight (Kraljevic, n.d.) and Deepr (Nguyen, n.d.) have 
 shown promising results in using sequential models and 
 attention mechanisms for healthcare predictions. For 
 instance, BEHRT, adapts the transformer architecture to 
 capture the nuances of patient histories, while RETAIN 
 (REverse Time AttentIoN) employs a reverse time two 
 level attention mechanism to prioritize recent clinical 
 events in its prediction, enhancing the interpretability of 
 the model to understand what influences the predictions. 
 Deepr applies deep learning techniques to model patient 
 sequences for predictive analytics. Additionally, the 
 potential of applying Large Language Models (LLMs) to 
 healthcare is gaining traction, with researchers 
 investigating how these models can be fine-tuned to 
 handle patient data. 
 The Foresight v2 model is a LLM fine-tuned on MIMIC-III 
 dataset to predict both disorders and disease risk scores 
 for patient timelines using SNOMED codes. The authors 
 expand the tokenizer to add these codes and report 
 improvements over their Foresight v1 model on a test set 
 of 2101 patients, demonstrating how generative AI can be 
 effective in predicting both specific disorders and overall 
 risk of future medical events. However they also describe 
 challenges due to lack of data and reliance on a small 
 dataset, which may fail to capture the diversity of patient 
 populations. 
 Despite the progress in exploring generative AI and 
 transformer-based approaches, a critical gap 
 remains–the lack of a transformer-based model trained 
 on multi-modal attributes from claims and clinical 
 records, tokenized using medical terminology systems, 
 and trained at scale. In this research we present the LMM, 
 which achieves state-of-the-art (SoTA) performance for 
 cost and risk prediction in healthcare. 



 3. Method 
 3.1 Large Medical Model (LMM) 
 To conduct our research, we trained an autoregressive 
 transformer based neural network on patient medical 
 events as a unified sequence of data. Rather than 
 employing language and text in the sequence as is done 
 with LLMs, we compose individual patient timelines by 
 combining structured medical event data as sequences of 
 medical event codes and taxonomies. A text based 
 approach would require much longer sequence lengths to 
 convey the same information presented in medical 
 codable concepts which LLM’s have been shown to 
 struggle with (Soroush, n.d.). For example, medical 
 concepts such as ICD-10 CM codes (International 
 Classification of Diseases) convey information about 
 patient diagnoses and conditions. Typically in human 
 language a condition could be referred colloquially as 
 “breast cancer,” more specifically for healthcare data 
 standards and billing purposes as a “Malignant neoplasm 
 of unspecified site of unspecified female breast” which is 
 also specified as the ICD-10 CM code “C50.919.” Using a 
 language based vocabulary, later more specific text 
 requires 13 tokens, whereas in our approach using a 
 medical event based vocabulary we can convey the same 
 information in 1 to 4 tokens. 
 An LLM tokenizer would use 25 tokens to convey this 
 information: 

 By contrast, GenHealth.ai’s LMM represents the same 
 information with codable concepts instead of words 
 resulting in a shorter, more information dense sequence: 

 Autoregressive models tend to place more importance on 
 recent events and tokens, and by reducing the total 
 number of tokens we are able to drastically reduce 
 compute requirements and capture a more salient signal 
 for each event.  Additionally, training on text would 
 necessitate getting data from the entire internet, and 
 might occlude healthcare specific insights. Furthermore, 
 text models struggle with numeric data, while our 
 approach allows for a custom tokenization for better 
 handling of numerical information. Finally, text models do 
 not have a built in way for representing time series 

 events, this makes tracking patient historical timelines 
 difficult. 

 3.2 Data 
 Our patient sequences are produced from healthcare 
 claims data from a number of sources in a variety of 
 formats. The total data set covers 140M patients of which 
 95% are in the training set and 5% split between the 
 validation and test sets. The patient population spans the 
 entire United States geographically and is composed of 
 approximately equally of commercial, Medicare, and 
 Medicaid members including medical events from 2016 to 
 2022. Patients aged 0 to over 100 are all included. We do 
 not prune or filter the data when training our model. 
 Each patient’s data is formatted into a linearized 
 sequence of event tokens representing the medical 
 history of an individual. There are tokens representing 
 place of service, service codes (CPT-4, HCPCS, ICD-10 
 PCS), diagnosis codes (ICD-10 CM), drugs (NDC), 
 demographic information, claim costs and the timing of 
 events. 

 3.3 Monte Carlo Simulations 
 Subsequent to model training, during inference, the LMM 
 produces multiple sequences of events given a patient’s 
 history. Each inference run using a patient’s history will 
 produce different future events given the 
 non-deterministic nature of our decoding method. This 
 Monte Carlo simulation of futures allows us to estimate 
 the probabilities of events as we aggregate across them. 
 Consider the example as shown in figure 1;  5 different 
 sequence runs with the same patient’s history may 
 produce 5 different futures which can then be stacked 
 and aggregated to produce a probability distribution of 
 the patient's future over time. The individual events from 
 each of these predictions or the compiled simulations can 
 be used to interrogate the data at the event or sequence 
 level. For example, if each green event were one dollar, we 
 can interpret the model to say in runs 1, 3, and 4 the 
 patient’s future set of medical events cost $1, run 2 cost 
 $2, and run 5 did not incur any medical cost. Moreover, 
 we can associate successive events with conditional 
 probabilities beginning to indicate causal relationships. 

 Figure 1� Monte Carlo Simulation 

 In contrast to other models that regress a single variable 
 like cost or produce a probability distribution over a small 
 subset of condition categories, the LMM can generate 



 likelihood of occurrence over any event in the training 
 vocabulary, including drugs, diagnoses, procedures, or 
 other events. When using the model to predict cost, this 
 provides insight into what the cost is for and when it is 
 incurred for any individual or a group of individuals, 
 making the output far more actionable. 

 3.4 Training and Evaluation Pipeline 
 Overall the process consisted of this series of steps: 

 1.  Build a vocabulary of medical events 
 2.  Construct sequences of historical patient events 
 3.  Train a transformer based neural network model 

 on those events to predict the next token 
 4.  Use the resulting model to run inference multiple 

 times for each patient in a validation set 
 5.  Calculate the total cost of care by summing the 

 predicted cost events, and compare to the actual 

 4 Experiments and Results 
 The study is divided into two parts: one focused on 
 forecasting healthcare costs and the other on predicting 
 chronic conditions. Each part uses a distinct cohort, 
 chosen to align with the objectives of the respective 
 analysis and directly compare to prior research. 

 4.1 Care Cost Prediction 
 We benchmarked the LMM against existing predictive risk 
 models as measured by the Society of Actuaries (SoA) in 
 Accuracy of Claims-Based Risk Scoring Models (2016). To 
 the best of our knowledge, no equally comprehensive 
 evaluation of industry standard risk scoring models has 
 been published since the SoA study. Our model 
 outperforms all the models compared in the SoA paper, 
 including thosefrom Milliman, Hopkins, Cotiviti, etc. 
 We conducted additional analysis comparing the public 
 Hierarchical Condition Category (HCC) risk model from 
 the US government, and found that we outperform that as 
 well. Additionally, given the meaningful advancements in 
 Large Language Models (LLMs) we also evaluated various 
 methods of coaxing Open AI’s gpt-4o model into 
 predicting next year’s cost given last year’s data (in both 
 structured and language formats). However, the best 
 response from the LLM was to use last year’s total cost to 
 predict next year’s total cost, which is a naive approach 
 that performs far worse than all other models in this 
 study. 
 4.1.1 Data Collection 
 To compare to the results from the SoA paper, we 
 produced a cohort of 50,000 patients per the same 
 inclusion and exclusion criteria as specified in the SoA 
 paper, from a similarly broad commercial patient 
 population. While the 2016 SoA study used data from 2012 
 to predict healthcare costs for 2013, we used the data 
 from 2017 to predict 2018, as our data begins in 2016. 

 The criteria are as follows: 
 ●  Individuals who did not have prescription drug 

 data available in the dataset were excluded. 
 ●  Any individual with at least one capitated service 

 in either year of the historical data was excluded. 
 ●  Exclude individuals with less than 12 months of 

 enrollment in the baseline year (2017) 
 By aligning our cohort selection with the criteria used in 
 the SoA study, we ensure that our findings are 
 comparable and that our model's performance can be 
 benchmarked against established standards in the field. 
 4.1.2 Data Overview 

 Figure 2� Population Age and Gender Distributions 

 Figure 2 shows the comparison between demographic 
 distribution of the GenHealth cohort with the 2016 SoA 
 study cohort. Our sample, derived from 2017 and 2018 
 commercial databases, closely aligns with the reference 
 population of the 2016 SoA cohort, which was sampled 
 from the 2012 and 2013 MarketScan databases. The 
 observed differences reflect a slightly aging population. 
 4.1.3 Measure of fit 
 This section introduces the key metrics used in the SoA’s 
 research to evaluate the accuracy and effectiveness of the 
 LMM in estimating healthcare costs. 
 R-Squared 
 R-Squared (R², Coefficient of Determination) measures 
 the proportion of the variance in the actual costs that is 
 predictable from the predicted costs. It is calculated as: 

 where  ŷ  i  is predicted cost,  y  i  is actual cost,  ȳ  is  the mean 
 of the actual costs, and  n  is the number of observations. 
 A higher R² value suggests that the model more 
 effectively captures the underlying patterns in the data, 
 leading to more accurate predictions. 



 Normalized Mean Absolute Error (NMAE) 
 Mean Absolute Error (MAE) measures the average 
 magnitude of the errors between predicted and actual 
 costs, without considering their direction. It is defined as: 

 By normalizing the MAE, we account for variations in 
 scale, allowing for a more meaningful comparison of 
 model performance across different datasets and 
 contexts. A lower NMAE indicates better model accuracy, 
 with values closer to zero reflecting predictions that are 
 more precise relative to the scale of the data. 
 4.1.4 Results 
 The LMM reduces the Normalized Mean Absolute Error 
 by approximately 14.1% compared to the best 
 commercial models.  The SoA conducted analysis on both 
 a raw uncensored population and a censored population 
 (where patients were removed from the metric 
 calculations if their predicted cost was greater than 
 $250,000). As shown in Table 1, we find that our model 
 outperforms on both uncensored and censored 
 calculations, and for the purposes of this research, we 
 report the data for the raw uncensored comparisons. The 
 LMM achieves a NMAE of 78.3%, which is 14.1% better 
 than the previous best NMAE of 91.2% reported in the 
 2016 SoA study. The average cost in the GenHealth cohort 
 is $6,097 so on average the LMM would predict 
 $972.closer to actual cost compared to the best model 
 from the SoA paper. To calculate the future year cost, we 
 run the Monte Carlo simulation on 64 generated futures 
 for each patient and sum the dollar amount tokens from 
 each future to create that simulation’s predicted cost. 
 Finally, we average the 64 futures’ total costs to produce 
 the model’s predicted cost for each patient. 

 R-Squared 
 (higher=better) 

 NMAE 
 (lower=better) 

 Cotiviti (DxCG)  23.8%  91.2% 

 Hopkins (ACG)  17.8%  96.7% 

 Milliman (MARA)  24.8%  91.8% 

 SCIO (PCCM)  15.1%  95.8% 

 US Gov (HHS-HCC)  -34.3%  122.8% 

 GenHealth.ai (LMM)  25.3%  78.3% 
 Table 1� R-Squared and MAE comparison with other models 

 The model also achieves an R² (Coefficient of 
 Determination) of 25.3%, which is a 2% improvement over 
 the best model in the SoA study. This suggests that in 
 addition to predicting better cost on average, the model's 
 explanatory power of the variance is also improved. When 
 compared with the HHS-HCC model (“The HHS-HCC Risk 

 Adjustment Model for Individual and Small Group 
 Markets under the Affordable Care Act - Centers for 
 Medicare & Medicaid Services”, n.d.) — a risk adjustment 
 methodology commonly used in the US healthcare 
 industry—on the same cohort, it produced a NMAE of 
 123% and a negative R² of 0.343, indicating a poor fit, 
 whereas our model demonstrates better explanatory 
 power and overall performance. For reference, the square 
 of the Pearson correlation coefficient (r²) for HHS-HCC is 
 0.134 vs 0.282 for the GenHelath.ai LMM. 

 Figure 3� NMAE Across Demographic Categories 

 To address potential biases related to gender and age in 
 the LMM, we analyzed the data across various 
 demographic categories as shown in Figure 3. Overall, no 
 significant biases were detected, with NMAE values 
 across age groups ranging between 0.77 and 0.81, and 
 across gender, between 0.78 for females and 0.79 for 
 males, suggesting that the model does not exhibit 
 significant bias toward any particular group. 

 Figure 4� Top 1 Percent Identification - AUC 



 The analysis of cost percentiles shows a strong alignment 
 between predicted and actual costs in the lower and 
 mid-range percentiles with greater divergence in the 
 highest percentile. This error in the tail end of heavily 
 skewed cost distribution of healthcare is to be expected, 
 yet an analysis of identifying the top 1 percent of high 
 cost individuals yields an AUC score of 0.86 (on par with 
 the best models in SoA) as can be seen in Figure 4. 
 The LMM shows improved accuracy and consistent 
 performance in predicting healthcare costs. It improves 
 upon existing benchmarks while maintaining equity 
 across demographic groups and provides an option to 
 view distributional output, not just point estimates. 
 As a by-product of the cost data, the LMM also produces 
 events for predicted conditions, procedures, drugs, and 
 more over time. Next, this study also evaluates the 
 efficacy of the conditions, and more specifically chronic 
 disease prediction. 

 4.2 Chronic Disease Prediction 
 Unlike the risk models in the SoA paper, the LMM has the 
 ability to predict any condition, procedure, medication, or 
 episode of care etc. and the time to those events. Chronic 
 condition prediction is often critical in managing care. To 
 assess the LMM’s ability to predict diagnoses we utilized 
 definitions of chronic conditions from the Chronic 
 Conditions Data Warehouse (CCW) for evaluating 
 predictions across 30 chronic diseases categories and 
 compared our results to  BERHT  introduced a novel 
 approach to modeling longitudinal patient data using 
 transformers within electronic health records (EHRs) for 
 predictive healthcare tasks. While the LMM predicts ICD 
 diagnosis codes directly, BERHT predicts a higher level 
 aggregation for 301 conditions. On aggregating across 
 common conditions we are able to directly compare 19 
 chronic condition categories with BERHT and find that 
 the LMM has marginally better results. 
 4.2.1 Data Collection 
 In this CCW section, we leveraged data from both 
 commercial insurers and the Centers for Medicare & 
 Medicaid Services (CMS), and randomly selected 50,000 
 records from each source’s validation set for evaluating 
 performance. Our focus was on patients who were 
 enrolled in 2017 and continued their enrollment through 
 2021, allowing us to capture a comprehensive longitudinal 
 view of their health trajectories. To ensure consistency 
 with the BEHRT study, which emphasizes predictions 
 within the first six months of the year, our analysis was 
 concentrated on this same prediction period. 
 Note the difference in data selection from the SoA paper. 
 We included the Medicare population (over 65 of age) and 
 we included up to 4 years of history instead of only 1 year. 

 In order to compare our results with those in BEHRT, we 
 mapped 19 conditions from the CCW dataset to their 
 equivalents in the Caliber codes which the BEHRT paper 
 used. For example, we mapped “Alzheimer's disease” and 
 “non Alzheimer's dementia” from CCW both to Dementia 
 in the Caliber framework. Through this mapping process, 
 we achieved a total of 19 conditions that were 
 consistently evaluated across both datasets, enabling a 
 comparison of chronic disease prediction outcomes. The 
 full mapping is in Appendix A. 
 4.2.2 Data Overview 
 The Figure 6 displays demographic distributions for the 
 evaluation cohort including age, gender, and ethnicity. 
 The age distribution covers a range from 0 to over 100 
 and 7 ethnicities. The lower count in the 60-70 group is 
 due to US patients transitioning to Medicare Advantage 
 resulting in fewer patients whose histories include 4 years 
 which we maintained for consistency to BEHRT. 

 Figure 6� Demographic Age, Gender, and Ethnicity Distribution 

 Due to the cohort criteria requiring patients to be 
 enrolled for at least four years and separate identifiers 
 between our commercial and Medicare datasets there are 
 fewer individuals in their mid-60’s as individuals 
 transition plan types and lack the full four year 
 continuous history required for the cohort. 



 Figure 7� Number of patients by Disease 

 Figure 7 displays the total number of cases per disease, 
 highlighting the distribution of patients across various 
 conditions in the dataset. Conditions like hypertension 
 and hyperlipidemia have the highest occurrence ratios, 
 with significantly more patients compared to rarer 
 conditions such as endometrial cancer and hip pelvic 
 fracture. 
 4.2.3 Measures of fit 
 To compare our model with the BEHRT model we will 
 compare AUROC and AUPRC scores. 
 AUROC (Area Under the Receiver Operating 
 Characteristic Curve):  This metric measures the model's 
 ability to distinguish between classes at all decision 
 thresholds. The area under the curve reflects the 
 probability that the model will rank a randomly chosen 
 positive instance higher than a randomly chosen negative 
 one. 

 𝐴𝑈𝑅𝑂𝐶    =
 0 

 1 

∫  𝑇𝑃𝑅 ( 𝑡 )    𝑑𝐹𝑃𝑅 ( 𝑡 )

 where: 
 ●  True Positive Rate (TPR)  or  Sensitivity  is defined 

 as: 

 𝑇𝑃𝑅    =     𝑇𝑃 
 𝑇𝑃    +    𝐹𝑁 

 ●  False Positive Rate (FPR)  is defined as: 

 𝐹𝑃𝑅    =     𝐹𝑃 
 𝐹𝑃    +    𝑇𝑁 

 APS (Average precision Score) or AUPRC (Area Under the 
 Precision-Recall Curve):  This metric emphasizes the 
 trade-off between precision and recall across various 
 thresholds, making it particularly valuable for evaluating 
 performance on imbalanced datasets. 

 𝐴𝑈𝑃𝑅𝐶    =
 0 

 1 

∫  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ( 𝑟 )    𝑑𝑅𝑒𝑐𝑎𝑙𝑙 ( 𝑟 )

 where: 
 ●  Precision  is defined as: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛    =     𝑇𝑃 
 𝑇𝑃    +    𝐹𝑃 

 ●  Recall  (same as TPR) is defined as: 

 𝑅𝑒𝑐𝑎𝑙𝑙    =     𝑇𝑃 
 𝑇𝑃    +    𝐹𝑁 

 It should be noted that in cases of class imbalance, like 
 rare disease prediction data, APS offers a more nuanced 
 view of model performance. However, this metric is 
 influenced by the number of positive cases in the dataset. 
 In other words, as the prevalence of the positive class 
 decreases, the number of false positives is likely to 
 increase because the model encounters more negative 
 instances that could be incorrectly classified as positive. 
 This decrease in precision can significantly affect the 
 shape of the precision-recall curve and therefore the 
 AUPRC. Because of this it can be difficult to compare APS 
 across evaluation sets with significantly different baseline 
 prevalence rates. 
 In contrast, while AUROC provides a general measure of a 
 model’s ability to distinguish between classes, it may 
 overestimate performance in datasets with a low 
 prevalence of the positive class. This is because the true 
 positive rate can heavily influence overall results, even if 
 the model struggles with detecting rare positive cases. 
 Using both AUROC and AUPRC together can give a 
 clearer picture of model performance, especially for rare 
 disease predictions where accuracy in detecting the 
 minority class is critical. 
 4.2.4 Results 
 Across the 19 conditions mapped using CCW and Caliber 
 Codes, the GenHealth LMM achieves an average AUROC 
 of 0.897 which is a 1.9% improvement over the BEHRT 
 score of 0.881. We see close performance between the 
 two models, with minor variations by conditions. The 
 LMM sequences, however, indicate all other events before 
 and after the chronic condition diagnosis; that level of 
 detail in output can make the LMM more actionable. 
 Specifically, in Figure 8, the GenHealth model 
 demonstrates higher AUROC scores for conditions like 
 diabetes (0.95 vs. 0.81), atrial fibrillation and flutter (0.95 
 vs. 0.90), dyslipidemia (0.87 vs. 0.79), and hypertension 
 (0.90 vs. 0.82). 



 Figure 8� Genhealth AUROC compared with BEHRT’sAUROC 

 In contrast, the BEHRT model has higher AUROC scores 
 for conditions such as stroke (0.91 vs. 0.83) and lower 
 respiratory tract infections (0.83 vs. 0.91). 

 Figure 9� Average Precision and ROC score for Disease 
 Prediction 

 Figure 9 illustrates the performance of the LMM across 
 the 19 final diseases, represented by two key metrics: the 
 APS on the x-axis and the ROC Score on the y-axis. Each 
 point corresponds to one disease, with the size and color 
 of the points reflecting the Occurrence Ratio (Occurence 
 / Patient population) of the disease in the dataset. 

 Notably, diabetes, hypertension, and dyslipidemia are 
 diseases where the model demonstrates both high APS 
 and ROC Scores. The high APS for these conditions is 
 expected given their higher prevalence, which typically 
 makes it easier to achieve strong precision-recall 
 performance. Moreover, the high AUROC scores for these 
 more common diseases indicate that the model's ability 
 to discriminate between classes remains robust even in 
 more balanced datasets. This combination of high APS 
 and high AUROC attests to the model’s accuracy and 
 reliability in predicting these more common diseases. 
 However, it’s important to note that other conditions with 
 lower prevalence tend to have higher AUROC scores. This 
 is because AUROC is less effective in imbalanced datasets, 
 often resulting in artificially inflated scores for conditions 
 with lower prevalence. 
 For diseases with relatively lower prevalence but still high 
 APS and ROC Scores, atrial fibrillation and flutter, 
 hypothyroidism, heart failure and primary malignancy 
 prostate stand out. Despite their lower occurrence, the 
 model maintains a strong ability to discriminate between 
 classes and balances precision with recall effectively. This 
 indicates that the model is well-calibrated not only for 
 prevalent conditions but also for certain less common, yet 
 clinically significant diseases. 
 By considering both metrics, particularly in datasets with 
 varying prevalence rates across different diseases, we 
 ensure a comprehensive and accurate assessment of the 
 model’s effectiveness across a diverse range of 
 conditions. 

 5 Discussion and Future Research 
 Our research introduces the Large Medical Model (LMM), 
 which, for the first time, combines numerous 
 advancements building over prior models: 1) we 
 sequenced  medical event tokens  rather than natural 
 language text or one-hot-encoding 2) we employed a 
 transformer  based architecture 3) we achieve a  large 
 scale  by training on 140M patients 4) we  simulated 
 multiple futures  using a Monte Carlo method to predict 
 any of those events including cost. Our results suggest 
 that the model is capable of understanding and modeling 
 a varied set of patient timelines and is able to outperform 
 top risk scoring models by 14.1% on cost of care and 1.9% 
 on disease risk prediction over a range of conditions. 
 The LMM marks a significant advancement in the 
 application of transformer-based architectures over 
 previous state of the art. In particular, we demonstrate 
 the model’s effectiveness in key downstream tasks such 
 as cost and chronic disease prediction, finding it to 
 perform exceptionally well despite only being 
 (pre)-trained on next token prediction. In doing so, we set 
 a new benchmark for the integration of such models in 



 real world health care settings, enabling more precise and 
 personalized healthcare interventions. 
 Most notable, however, is the unique method of 
 sequencing medical events over time. By training the 
 model on  temporally accurate sequences of actual 
 patient histories, the LMM can generate more types of 
 actionable insights than any existing risk and cost 
 prediction methods. For example, the LMM can not only 
 stratify a population based on cost or risk for some 
 condition, but it can also identify specifically why the 
 most complex and expensive patients in that group will be 
 expensive. The LMM can specify the individual procedure 
 codes and conditions that the patient may have in the 
 future and when they may occur. Additionally, it can also 
 identify the likelihood of a patient to be admitted to an 
 Emergency Department, what that admission is expected 
 to be for, and how much that will cost. This level of detail 
 is unprecedented in the industry today and is crucial for 
 positively impacting patient care and healthcare costs. 

 5.1 In-Silico Research and Personalized Medicine 
 In addition to its ability to predict total cost of care and 
 onset of conditions, the LMM is also able to simulate the 
 clinical effects of an intervention, new diagnosis, and 
 more. This can be achieved by appending an additional 
 event to the end of any patient history used as input into 
 the model. We explored some of these simulated 
 interventions using the LMM and see that it can identify 
 novel clinical relationships unexplored in the current 
 medical literature. For example emerging but 
 inconclusive research exists investigating hearing stroke 
 as a cause of Parkinson’s. Using the LMM, we can simulate 
 the effect of stroke on various patients including a 70 year 
 old female and males. The LMM indicates a much higher 
 likelihood of the patient developing Parkinson’s and 
 Parkinsonism for males than females. Although our model 
 has never before seen any research papers or text 
 indicating causality (given that it is trained only on 
 medical event codes), our findings are corroborated by 
 published research by the Parkinson’s Foundation in 
 which men have 1.5 times higher likelihood of Parkinson’s 
 (“Prevalence of Parkinson’s disease across North 
 America”). That research however does not indicate what 
 triggers the diagnosis. The LMM, however, indicates it is 
 the stroke that leads to Parkinson’s. This relationship has 
 been found in mice models (“Ischemic stroke causes 
 Parkinson’s disease-like pathology and symptoms in 
 transgenic mice overexpressing alpha-synuclein”) and in 
 associations without direct casualty ascribed in human 
 data research (“Associations between cerebrovascular risk 
 factors and parkinson disease”). 
 See the higher likelihood of Parkinson’s-related events 
 (colored in black) after a 70-year-old has a stroke. (Figure 
 10). 

 Females  Males 

 Figure 10� Simulated likelihood of Parkinson’s and 
 Parkinsonism events after a stroke for 70-year-olds, with 

 Parkinsonism events colored in black. 

 Unlike traditional research, the Large Medical Model is 
 capable of running in-silico in minutes without the 
 complexity of live subjects or data collection for relevant 
 cohorts. If each patient’s record were armed with this 
 information of potential future events, we imagine 
 treatment of care would be far better informed. 
 Ultimately, we expect use of the LMM to provide an 
 efficient means of exploring medical relationships more 
 broadly and to its ability to aid the selection of in-vivo 
 studies. 

 5.2 Use Cases 
 Like the above, the LMM’s predictions can be leveraged to 
 address a broad set of healthcare challenges beyond the 
 evaluations detailed in this paper. Similar to LLMs which 
 can be used to perform Q&A, run chatbots, write articles, 
 summarize text, etc., the LMM supports a wide range of 
 use cases that are crucial for the healthcare industry. For 
 instance, in  Population Health  , the LMM can stratify 
 patient populations and identify optimal next-best 
 actions by analyzing care paths derived from over 100 
 million other patients. For  Prior Authorization  , the  model 
 can simulate patient journeys to better understand 
 outcomes and cost implications, thereby improving 
 decision-making during care determinations.  Financial 
 Forecasting  is another key application, where the  LMM 
 can predict the total cost of care using simulated care 
 pathways for individuals or cohorts, enhancing 
 underwriting, stop-loss insurance, and financial planning. 
 Lastly, in  Risk Management  , the LMM can forecast 
 patient health trajectories at the ICD level, enabling the 
 identification of high utilizers and improving care paths. 
 In future research, we will explore a broader range of 
 downstream tasks to demonstrate additional domains 
 where this approach can positively  impact healthcare. 
 The Large Medical Model represents a leap forward in 
 how we can model and understand healthcare, leveraging 
 the advances in modern AI and a deep understanding of 
 the healthcare domain. We hope the broader use of it in 
 the industry will lead to a more efficient healthcare 
 system which can also significantly improve patient care. 



 References 

 An Tran-Duy. 2020. “A Patient-Level Model to Estimate 
 Lifetime Health Outcomes of Patients With Type 1 
 Diabetes.” Diabetes Care 43, no. 8 (June): 1741–1749. 

 Choi, Edward. n.d. “RETAIN: An Interpretable Predictive 
 Model for Healthcare using Reverse Time Attention 
 Mechanism.” 

 Hileman, Geof. 2016. “Accuracy of Claims-Based Risk 
 Scoring Models.” Society of Actuaries 

 “IMO Health.” n.d. Hierarchical Condition Categories. 
 https://www.imohealth.com/ideas/article/hcc-101- 
 what-you-need-to-know-about-hierarchical-conditi 
 on-categories/. 

 Kraljevic, Zeljko et al. “Foresight—a generative pretrained 
 transformer for modelling of patient timelines using 
 electronic health records: a retrospective modelling 
 study.” The Lancet Digital Health, Volume 6, Issue 4, 
 e281 - e290 

 Kumar. 2023. “Early health prediction framework using 
 XGBoost ensemble algorithm in intelligent 
 environment.” Artif Intell Rev 56�1591–1615. 10.1007. 

 Li, Y., Rao, S., Solares, J.R.A. et al. BEHRT: Transformer for 
 Electronic Health Records. Sci Rep 10, 7155 (2020). 
 https://doi.org/10.1038/s41598-020-62922-y 

 Nguyen, Phuoc. n.d. “Deepr: A Convolutional Net for 
 Medical Records.” 

 “NHE Fact Sheet.” 2024. CMS. 
 https://www.cms.gov/data-research/statistics-tren 
 ds-and-reports/national-health-expenditure-data/n 
 he-fact-sheet. 

 “Waste in the US Health Care System Estimated Costs 
 and Potential for Savings.” n.d. Jamanetwork. 
 https://jamanetwork.com/journals/jama/article-abs 
 tract/2752664  . 

 Marras, C., Beck, J. C., Bower, J. H., Roberts, E., Ritz, B., 
 Ross, G. W., Abbott, R. D., Savica, R., Van Den Eeden, 
 S. K., Willis, A. W., Tanner, CM, on behalf of the 
 Parkinson’s Foundation P4 Group (2018). “Prevalence 
 of Parkinson’s disease across North America. Npj 
 Parkinson's Disease”, 4(1), 1–7. 

 Lohmann, S., Grigoletto, J., Bernis, M.E. et al. Ischemic 
 stroke causes Parkinson’s disease-like pathology and 
 symptoms in transgenic mice overexpressing 
 alpha-synuclein. Acta Neuropathol Commun. 10, 26 
 (2022).  https://doi.org/10.1186/s40478-022-01327-6 

 Benjamin R. Kummer MD, Iván Diaz PhD, Xian Wu MPH, 
 Ashley E. Aaroe MD, Monica L. Chen BA, Costantino 
 Iadecola MD, Hooman Kamel MD, Babak B. Navi MD, 
 MS “Associations between cerebrovascular risk 
 factors and parkinson disease” 

 Acknowledgments 
 Special thanks to Geof Hileman FSA, MAAA (author of the 
 referenced Society of Actuaries paper) for reviewing this 
 manuscript. 

 Appendix A 
 Mapping conditions between CCW and Caliber 
 Conditions from 57 reported disease in Table 5 of BEHRT 
 paper indicating where there are minor variations: 

 CCW Condition  Mapped Caliber 
 Condition 

 Acute myocardial 
 infarction  (not in BEHRT) 

 Anemia 

 Other anaemias + Iron deficiency 
 anemia + Vitamin B12 deficiency 
 anemia 

 Asthma  Asthma 

 Atrial fibrillation and 
 flutter  Atrial Fibrillation and flutter 

 Benign prostatic 
 hyperplasia  Hyperplasia of prostate 

 Cancer breast  (not in BEHRT) 

 Cancer colorectal  (not in BEHRT) 

 Cancer endometrial  (not in BEHRT) 

 Cancer lung  (not in BEHRT) 

 Cancer prostate  Primary Malignancy Prostate 

 Cancer urologic  (not in BEHRT) 

 Cataract  Cataract 

 Chronic kidney 
 disease  (not in BEHRT) 

 Chronic obstructive 
 pulmonary disease 

 Chronic obstructive pulmonary 
 disease (COPD) 

 Dementia 
 (Alzheimer's disease + 
 non-Alzheimer's 
 dementia)  Dementia 

 Depressive mood 
 disorders  Depression 

 Diabetes 
 Type 1 Diabetes Mellitus, Type 2 
 Diabetes Mellitus, and Diabetes 
 Mellitus – other or not specified 

https://jamanetwork.com/journals/jama/article-abstract/2752664
https://jamanetwork.com/journals/jama/article-abstract/2752664
https://doi.org/10.1186/s40478-022-01327-6


 Glaucoma  Glaucoma 

 Heart failure 
 non-ischemic heart 
 disease  Heart failure 

 Hip pelvic fracture  (not in BEHRT) 

 Hyperlipidemia  Dyslipidemia 

 Hypertension  Hypertension 

 Hypothyroidism  Hypo or hyperthyroidism 

 Ischemic heart 
 disease 

 Coronary heart disease not 
 otherwise specified 

 Osteoporosis  Osteoporosis 

 Parkinsons  (not in BEHRT) 

 Pneumonia 
 Lower Respiratory Tract 
 Infections 

 Rheumatoid arthritis  (not in BEHRT) 

 Stroke 
 Stroke Not otherwise specified 
 (NOS) 


